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Abstract – In this paper we investigate the k -
connectivity threshold of distributed dense ad hoc 
heterogeneous wireless sensor network architecture. We 
consider the situation when sensors are deployed in the 
surveillance area according to a uniform distribution 
perturbed by a Gaussian noise. We derive analytically 
the minimum detection range which guarantees an 
emerging structure in the network, namely the 
connectivity, which becomes larger and larger as the 
number of sensors in the network increase. This allows 
the target track to be propagated almost surely 
throughout the network using the minimum possible 
amount of prime energy. We report the results of some 
simulation experiments which further support the 
theoretical results. 

 

Keywords : random distributed sensor networks, self-
organization, connectivity threshold, detection range.  
 

1. Introduction 
 

Wireless sensor networks consist of large number of 
devices, each capable of some limited computation, 
communication and sensing, operating under energy 
constraints in an unattended mode [1]. These networks 
are intended for a broad range of environmental sensing 
applications from weather data-collection to target 
tracking and habitat monitoring [2], [3], [4]. 

In application such as battlefield surveillance and 
environmental monitoring, sensors may be dispersed, 
scattered, or airdropped in remote terrains.  

 
*The views and conclusions contained in this document are 

those of the authors and should not be interpreted as presenting 
the official policies either express or implied of the Army 
Research Laboratory or the U. S. Government. 

 

The sensors establish spontaneously a 
communication network, monitor the area in an energy-
efficient manner, and re-organize upon failure [5]. The 
sensors create a globally coherent pattern out of local 
interactions, i.e. they form a self-organizing system [6], 
[7]. Other examples of self-organizing system are flocks 
of birds, shoals of fish, swarms of bees in nature and 
self-organizing neural networks, swarm intelligence and 
self-configuring and adaptive sensor networks in 
engineered systems.  

In order to exploit the full communication power of 
the network, it is important that any node can exchange 
information with the others. In this paper we assume 
that two nodes in the network can exchange information  
only if each of them falls within the coverage area of 
the other. Therefore, it becomes important to design the 
detection ranges of the sensors in such a way to 
guarantee that the network be connected with high 
probability. This means that information sent by a 
source node in the network can be propagated to a 
destination node through a communication path, i.e. 
through a sequence of intermediate nodes in the 
network. The smallest the length of the communication 
path, the smallest the propagation delay in the network. 

Whatever is the sensor deployment strategy used 
(random, regular, planned deployment) there are always 
inherent uncertainties in the final sensor location. 
Generally, it is either impossible or very difficult to 
place sensors at the desired location; for instance, it 
may be impractible to disseminate sensors from an 
airplane onto a foreign territory for surveillance 
purposes under severe weather condition [8]. 
Furthermore, sensors cannot be expected to fall exactly 
at predetermined locations; rather there are regions 
where there is a high probability of a sensor being 
actually located. In underwater deployment sensors may 
move due to drift or water current. In hilly terrain 
sensors they may move due to slope of the terrain. 

The primary contribution of this paper is to provide 
the design parameters of the wireless sensor network 
prototype proposed in the companion paper [9] in such 
way to enable an energy efficient target tracking and 
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target detection. In particular we give the minimum 
detection range of complex sensors which gives almost 
surely the connectivity of the random sensor network. 
Section 2 recalls the layered architecture used, Section 3 
formulates the problem using the theory of geometric 
random graphs. Section 4 describes how the connectivity 
of the sensor network relates to the propagation of the 
track estimate throughout the network. Section 5 presents 
experimental results and comparison with the theory. 
Section 6 summarizes the main findings. 
 
 
 

2. The sensor network architecture 

 
Sensors are spread out over a two dimensional and 
squared surveillance area. Initially the locations are 
randomly chosen according to a uniform distribution. 
However, when sensors are dropped on the surveillance 
area, the final location may not correspond with the one 
initially chosen; we model this uncertainty using a 
bivariate Gaussian distribution centered at the intended 
sensor location. 

Our network consists of two types of sensors, simple 
and complex. As in [10], simple sensors have only the 
capability of sensing their coverage area, comp ute binary 
information and transmit data to complex sensors. Binary 
information is encoded by a 1 if sensor detects something 
crossing its coverage area and by a 0 otherwise. Complex 
sensors, instead, have computation capabilities; they are 
able to locate the target by applying the maximum 
likelihood estimation algorithm described in [10].  

Sensors exchange information only if they are close, 
i.e. if the overlapping of their coverage areas is greater 
than a fixed constant (strong overlapping). Simple 
sensors communicate with complex sensors and complex 
sensors with both simple and complex ones. A clustering 
architecture has been implemented: simple sensors are the 
elements of the clusters and complex ones are the heads 
of the clusters.  

Our objective is to give the design parameters of the 
sensors in the network which minimize the costs while 
guaranteeing the connectivity of the sensor network 
consisting of only complex sensors. 

When the target track estimation is carried out, only a 
small subset of sensors in the network is kept in its fully 
active state. The details of how these sensors are selected 
are dis cussed in the companion paper [9]. We call such a 
subset of the sensor network the active zone. The active 
zone moves through the network along with the target. 
The transmission protocol consists of three stages: 

 
• Each complex sensor awakes the simple 

sensors in its cluster. 
 

• Simple sensors monitor their coverage area, 
and when they detect the presence of a target, 
awake close complex sensors, transmit their 
binary information to them and fall asleep 

 
• Complex sensors collect data from simple 

sensors, process their information as in [10] 
and compute the estimated position of the 
target. Finally they choose which complex 
sensors will be used to detect the target at 
the next step and activate a mechanism to 
awake them.  

  
The third stage of the protocol guarantees that the 

estimate is propagated throughout the network; however 
if the network consisting of complex sensors is not 
connected, there is a risk that all the sensors in the 
network will become asleep and consequently the target 
track estimation gets lost and is never recovered. This is 
an undesirable feature which we want to avoid. To this 
purpose we: 

 
1) Calculate the minimum transmitting range 

which guarantees the network consisting of 
only complex sensors to be k-connected almost 
surely (Section 3).  

 
2) Outline an algorithm which propagates the 

target track estimation to the new active zone 
efficiently (Section 4). 

 
Item 1) allows minimizing the amount of energy used, 
while item 2) implements the propagation of the track 
estimate through the network (which is connected 
almost surely). 

 

3. The connectivity problem  

3.1. Preliminaries 
 
A random graph  ))(,( npnG is a graph on n nodes such 
that edges are selected independently with probability 

( )np  [11]. Such a model is not well suited for our 
problem since edges depend on the geometric distance 
between the nodes and consequently are correlated 
random variables. 

Our problem may instead be modeled by means of 
geometric random graphs [12]. In this graph each node 
is uniquely identified by its yx, -coordinates which are 
selected according to some probability distribution and 
an edge between two nodes occurs if and only if their 
distance is smaller than a certain threshold valuer  .In 
our case the nodes of the graph are the complex sensors 
and sensor x and y can only communicate if there exists 
an edge connecting them. The detection range of the 
sensor is set to be the threshold value r . 

Therefore, we are simply saying that an edge is 
inserted between two sensors if and only if each of them 
falls within the coverage area of the other.  Thus we 
have stated that an overlapping between two sensors is 
strong if and only if each of the two sensors falls within 
the coverage area of the other sensor. 



 

A graph G is connected if for any pair of nodes x  
and y , it is possible to go from x  to y  traversing the 

edges and nodes of the graph. A generalization of 
connectivity to k -connectivity is the following: a graph 
G  is said to be k -connected if it cannot be disconnected 
by the removal of 1−k  or fewer vertices.  Clearly, 1-
connectivity corresponds to connectivity.  

Our objective is the following: what is the minimum 
value of the detection range )(nr which guarantees that 
the sensor network is k -connected with probability one 
as the number of sensors n goes to infinity? 

We call such a value the k -connectivity threshold for 
the graphG  and denote it by kr .  

The degree of a node v  in a graph is defined to be the 
number of nodes which are connected to v  by an edge. 
The minimum degree of a graph is the minimum degree 
over all its nodes. Denote by kδ  the threshold value of r  
above which a random geometric graph G  has minimum 
degree at least k  with probability one.  Penrose [12] 
proves the following theorem.  

Theorem 1. Given a positive integer k  and a geometric 
random graph G , for any probability distribution on the 
nodes we have  

kkr δ=    (1) 

with probability one as the number of nodes in the graph 
goes to infinity.  

 
One of the first results concerning the connectivity of 

wireless networks was published in [13]. The study of the 
connectivity problem in two dimensions was then 
reconsidered in [14] and [15]. In [16] and [17], using 
recent results from the theory of geometric random 
graphs [18], the connectivity threshold function for a 
uniformly distributed ad hoc network in 2]1,0[  is 
obtained.  

In the mathematical literature, Apple and Russo [19] 
investigate the special case when points are uniformly 
distributed in the unit square and the metric is taken to be 
the ∞l  norm. Penrose [18] generalizes their connectivity 

results to any metric pl , ∞≤≤ p2 , proving that 

asymptotically, with high probability, if one starts with 
single vertices and adds the corresponding edges as the 
radius increases, the resulting graph becomes  )1( +k -
connected at the moment it achieves a minimum degree 
of )1( +k .   

The reason why we are interested in the minimum is 
that sensors with small detection range are usually 
cheaper and all this allows for the possibility of more 
sensors to be deployed.  
 

3.2. Setup and solution of the problem  
 

We assume the coordinates representing sensor 
positions to be initially chosen according to a probability 

distribution p  uniform on the square [ ]21,0=Ω .  Due to 
uncertainty factors (see Section 1) we assume that each 
sensor falls within a certain ellipsoid centered at the 
aimed sensor location.  

We want to establish a reliable and fault tolerant 
communication infrastructure in that square. The fault 
tolerant property of the network depends on the k -
connectivity. The larger k , the more the network can be 
considered fault tolerant. However, if the value ofk is 
too large, then a larger detection range is needed and 
therefore the sensors must be more costly.  

The marginal probability density functions pdf on the 
nodes are: 
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which may also be rewritten as  
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where erf ( ) denotes the error function. 
 
Since we are interested in the pdf only inside the unit 

square, we consider the expressions (4) and (5) which 
are defined on the whole real axis and normalize them in 
the unit square. In order words, we define the new 

marginal ( )xf X
*  and ( )yfY

*  as 

 

( )
( )







 ≤≤
=

otherwise               0

10   ,* x
c

xf

xf
X

X σ  

 
 

(6) 

and 

( )
( )







 ≤≤
=

otherwise               0

10    ,* y
c

yf

yf
Y

Y σ  

 
 

(7) 

 

where ∫∫
1

0

1

0

)()( dyyfdxxf YX  which is equal to 

2

2

1
2 2

1erf
2

1
2





























+
















+−=
−

σ
σ

π
σ σσ ec  

 
 

(8) 

 



 

The k -connectivity connectivity threshold for the 
random geometric graph with the above derived 

probability distribution *f is derived in Appendix 1. 

Here, only the result is stated: 

*
min 

)log(
fn
nr

π
α =  

 
(9) 

 
We notice that the connectivity threshold kr  is 

independent of the particular k  as it appears from 
formula (9). However, when the number of sensors n  is 
fixed, it is reasonable to expect that the k -connectivity 
threshold becomes a decreasing function ofk .  
 

4.  Routing Algorithm  
 

In section 3 we have derived the minimum detection 
range which guarantees with probability one the k -
connectivity of the network of complex sensors. While 
this is a necessary condition for the estimate to be 
propagated, it is not sufficient. What can happen is that 
two consecutive active zones are connected to each other 
by another sensor which is in neither of the two active 
zones (see Figure 1). If a complex sensor only transmits 
its track estimate to his adjacent sensors  in the graph, we 
would have that the nodes in the active zone at step 1+t  
would not be awaken by the nodes in the active zone at 
the previous step t  and therefore would not receive their 
estimate. Therefore the target is lost and never recovered 
because the entire network is shut down from this 
moment on.  

In order to assure that the track estimate is propagated 
to the next active zone with large probability we can use 
a routing algorithm such as a flooding with pruning 
algorithm. Each complex sensor in the current active 
zone broadcast a packet containing the track estimate to 
all adjacent comple x sensors. Upon receiving the packet, 
each sensor transmits the packet to all its adjacent sensors 
except to the one from which the packet was received. In 
order to reduce the number of packets sent and therefore 
the amount of energy wasted for propagating the 
information throughout the network, the complex sensor 
which sends the first packet may insert a sequence 
number into it. For example, such sequence number may 
be set to the diameter of the network, i.e. to the maximum 
distance between any pair of nodes in the network. Each 
receiving sensor decrements the sequence number before 
sending the packet further along the network and does not 
send the packet if the value of the sequence number 
becomes zero.  
  
 

5.  Simulation Results  
 
In all simulations we have fixed the standard deviation 

of the bivariate normal to be 0.02 along each component. 

Since the problem of deciding whether a graph is k -
connected is NP-complete and would require us a 
considerable amount of time, in our numerical 
simulations we have estimated the probability of k -
connectivity with the probability that the minimum 
degree of the graph is k . Our choice of using the 
minimum degree can be justified by Theorem 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

Figure 1.  

Active  zones at two subsequent time steps .  

The first experiment shows how the probability of 1-
connectivity varies as a function of the sensor detection 
range. Such probability has been estimated by means of 
Monte Carlo runs. As expected, Figure 2 shows that the 
probability of 1-connectivity increases faster for large 
number of sensors (N = 200). For smaller number of 
sensors, e.g. N = 20, the probability of 1-connectivity 
starts approaching one only for values of the detection 
range equal to about 0.5, i.e. about half of the side of the 
squared surveillance area.  
 

 
 

Active zone at step t Active zone at step t+1 



 

Figure 2.  

Probability of 1-connectivity versus detection range 
for different number of sensors in the network 

 
 
The following table shows for the different sensor 

configurations the detection range for which the 
probability of connectivity in Figure 2 is greater than 0.9. 

 
  

Number of Sensors Detection Ranges  
20 0.4297 
50 0.3106 
100 0.2383 
200 0.1807 

Table 1.  

Detection range for different sensor configurations. 
 
 
The second experiment presents some simulation 

results concerning the probability of k -connectivity of a 
sensor network whose sensors are deployed according 

to *f . The number n  of sensors is fixed to three-

thousand.  
The detection range of each sensor equals the k -
connectivity threshold, which is independent ofk . The 

k -connectivity threshold for the distribution *f  is 
calculated using the formula given in equation (9).  The 
obtained results are summarized in Figure 3 for a number 
of three thousand sensors. 
 

 

Figure 3.  

Probability of k -connectivity for a network of 
three-thousand sensors using the connectivity 

threshold, 
 
 

The final experiments shows how the detection range 
computed using (9) compares with the expected value of 
the minimum detection range which guarantees 1-
connectivity. The latter is estimated as follows: for each 
given number of sensors in the network we run one-
hundred Monte Carlo runs. For each run we keep track 
of the minimum value of the detection range for which 
the graph generated by the run is 1-connected. Finally, 
we   average the values computed earlier.  

The number of sensors in the network varies from ten 
to one thousand. Figure 4 shows that the two detection 
ranges are very close to each other, especially when the 
number of sensors becomes larger than two-hundred. 
Therefore, the theoretical predictions gives by (9) starts 
becoming effective for a number of sensors on the order 
of few hundreds and thus not require the number of 
sensors in the network to be extremely large.  
 
 

 

Figure 4.  

Connectivity threshold versus number of deployed 
sensors. 

  
  

6. Conclusions  

 
In this paper we have investigated the minimum 
detection range required to guarantee the k -
connectivity of our proposed distributed sensor network 
architecture. We have assumed that sensors are initially 
deployed uniformly, and then perturbed by a Gaussian 
noise. Maintaining the k -connectivity for the network 
is essential if we want a fault-tolerant network where 
the target track estimate is propagated with probability 
one along the network without risking that the sensor 
network shuts down and do not recover any more the 
target. However, the condition is not sufficient and must 
be supported by efficient flooding algorithms which 



 

distribute the estimation to the nodes of the network in 
proximity of the target. The results of this paper have 
been exploited in the companion paper [9]. 
In a future continuation of the work we would like to 
consider a random sensor network of simple sensors  and 
allow them to sleep and wake-up via some random 
protocol.  We would then like to demonstrate how the 
expected number of awaken nodes  at some time instant 
can be used to predict both the connectivity of the 
network and the localization performance of the network 
estimated via the root mean squared position error of the 
simple sensors. 
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Appendix  
 
Consider a two-dimensional area ],0[],0[ 21 ll ×=Ω . For  

21 ≤≤ j denote by j∂ the union of all intersections of 

j  )1( −d -dimensional hyperplanes bounding Ω . Let 

*
jf  be the infimum of *f over j∂ . Furthermore, 

denote by *
0f  the infimum of  *f  over  Ω  and 

assume *f  to be strictly positive onΩ . Set 



 

)log(1)( aaaaH +−= for positive a and 1 for 0=a . 
Then the following holds: 

 

Theorem 2 [19]. Let 1}{ ≥nnk be a sequence of non-

negative integers such that 0/lim =∞→ nknn and   

bnk nn =∞→ )log(/lim , for ),0[ ∞∈b . Furthermore, 

assume that the sequence 1}{ ≥nnk is non-decreasing, and 

define )1,0[, 10 ∈aa by  
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Then with probability 1, 
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(A2) 

 
 
Notice that our joint probability density function 

which is given by the product of the densities ( )xf X
* and 

( )yfY
*  is strictly positive on its domain. Furthermore,  

( )xf X
*  and ( )yfY

*  are both continuous concave 

functions defined on a bounded domain and symmetric 
with respect to the point 0.5.  

Suppose we wish to achieve k -connectivity. 
Applying Theorem 2 to our problem, we obtain after 
straightforward calculation that  
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Therefore, 

*
min 
)log(

fn
nrk

π
=  

 
(A4) 

where *
minf is the minimum of the joint probability 

density on the considered domain. 
 
 

 


